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∗Abstract:Heart rate variability (HRV) is typically associated with neuroautonomic activity and viewed as a major
non–invasive tool to detect seizures. The HRV has been assumed and analyzed as a stationary signal. However the
presence of seizures can violate estimates of statistical parameters and conventional techniques intended to remove
outliers can be inaccurate. A useful approach implies setting thresholds to compute the first and third quartiles
from histogram data or residuals based on the estimated baseline. In this paper, we propose an accurate method to
identify outliers in HRV measurements with partial epilepsy retaining relevant information. The baseline perturbed
by the seizure in the HRV data is removed using thep-shift unbiased finite impulse response (UFIR) smoothing
filter operating on optimal horizons. The residuals histogram is plotted and the upper bound (UB) and lower bound
(LB) are computed as thresholds. A comparison is provided of a typical points detected in HRV/seizures based
on several methods used to estimate the baseline. A time/frequency analysis is supplied to show the difference
between the raw HRV and HRV without outliers. The method proposed is tested by partial seizures records taken
from patients during continuous EEG/ECG and video monitoring.
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1 Introduction

The term ’heart rate variability’ (HRV) has been ac-
cepted to describe variations of both instantaneous
heart rate and RR intervals, where R is a point corre-
sponding to the peak of the QRS complex of the elec-
trocardiogram (ECG) wave and RR is the interval be-
tween successive Rs [1]. Because the HRV is strongly
coupled with the autonomic nervous system (ANS)
[2], information from several physiological signals
such as ECG is also used to detect seizures [3, 4].
Epileptic seizures are taken as indicators, which en-
able the diagnostic of ANS disorders. The HRV
spectral content has frequency components, which are
classified in three main peaks: very low frequency
(VLF) < 0.04 Hz, low frequency (LF),0.04 − 0.15
Hz, and high frequency (HF)0.15 − 0.4 Hz [5]. The
LF and HF powers are associated with sympathetic
nervous system (SNS) and parasympathetic nervous
system (PNS) activity [6], respectively.

One of the main and oldest problems in biomed-
ical signal processing is the noise reduction without
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and Computers (CSCC 2018), Majorca, Spain, July 14-17, 2018.

disturbing the original signal, especially in ECG hav-
ing a high content of vital information [7]. Spe-
cial components of the disturbance, which immerse
in noise signals, are outliers which affect significantly
the performance of denoising algorithms. The out-
lier is defined as the measurement, which significantly
deviates from the logical or normal pattern of sensed
data [8]. Similarly, in statistics, an outlier is defined
as a ‘case that does not follow the same model as the
rest of the data’ [9].

There are many methods to remove outliers from
data. The most simple and useful one is known as
the Boxplot. This method displays batches of data
[10] and only five values from a set are used: the
extremes, the upper and lower hinges (quartiles), and
the median [11]. However, this method is inefficient
when data have non-stationary characteristics in some
parts. Nevertheless, an increasingly common process
to remove outliers is to estimate a model using several
method, such as smoothing algorithms [12, 13, 14].
Complete the smoothing, the outliers are excluded at
an arbitrary distance greater thanAσ from the model,
whereA can be specified by the user. Because there
are many algorithms to smooth bio-signals, the selec-
tion of an ideal method faces difficult. Furthermore,
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errors in the baseline optimal estimates of HRV sig-
nals strongly depend on the smoother degree.

It is now worth mentioning that an ideal base-
line for HRV signals does not exist and it is far less
available in the presence of partial epilepsy. There-
fore, an accurate method is required to estimate the
optimal baseline that helps identifying the outliers in
HRV measurements. One approach used in medi-
cal applications is based on thep-shift unbiased fi-
nite impulse response (UFIR) filter, which minimizes
the mean square error (MSE) on optimal averaging
horizonsNopt. The p–shift UFIR filter does not re-
quire unavailable prior knowledge about the ECG sig-
nal statistics, but produces suboptimal estimates when
Nopt is set properly. In [15], two ways have been
proposed to findNopt: a) by minimizing the trace of
the error covariance matrix and b) by minimizing the
derivative of the trace of the mean square value (MSV)
associated with the raw signal and estimate as func-
tion of N . Because an exact mathematical model of
the HRV signal is not available, the only option is to
findNopt using the second approach.

In this paper, we develop an approach to estimate
the baseline model of HRV with partial seizures and
identify the outliers by employing thep-shift UFIR
filter. We also compare the number of atypical points
based on the residuals calculated using several algo-
rithms: LOESS, RLOESS, LOWESS, Moving Aver-
age, and Spline. To test the algorithms, we use mea-
surement data from Post-Ictal Heart Rate Oscillations
in Partial Epilepsy available at MIT-BIH [17]. The
paper is structured as follows. In Section 2, a brief
description is given for the HRV based on the electro-
cardiogram model and database features used in this
work. In Section 3, we design the proposed algorithm
to estimate the baseline of HRV signals and develop
an algorithm to calculateNopt. In Section 4, we find
Nopt and identify the outliers using thep-shift UFIR
filter and some other algorithms. Finally, conclusions
and further work are discussed in Section 5.

2 HRV from Partial Seizures

In a typical ECG signal, a mixture of deflections Q, R,
and S generated by the heart’s muscles form a com-
plex QRS. The RR interval, called tachogram, is ob-
tained by computing the distance between the peaks
R immerses in the complex QRS. The HRV is then
represented with the instantaneous heart rate (IHR),
which is the inverse of the RR interval [18].

This work is based on data of HRV measurements
with partial seizures, which represent the shape alter-
ation causing perturbations in the baseline. The HRV
data are analyzed from partial seizures recorded in

5 female patients during continuous EEG/ECG and
video monitoring considered as agold standard[17].
The heart beat annotations were obtained using fully
automated methods described in [20] and available in
‘physionet’.

3 Baseline Estimate

The baseline estimate can be obtained using diverse
FIR filtering algorithms [19]. However, smoothing
allows for higher accuracy when the solution is not
required in real time, as in our case. Therefore, we
will base our investigation on thep-shift UFIER filter,
which is briefly described below.

3.1 p-Shift UFIR Filtering.

Let us represent the ECG measurements assn =
xn + νn, wheren is the discrete time index,xn is
the ECG signal andνn is the random noise, which can
be supposed to be white Gaussian. Assuming thatxn
is the baseline andνn is the measurement residual,
we can findνn = sn − xn based on an accurate ap-
proximation ofxn. The residualνn contains outliers
in white Gaussian noise environment. Now,xn can
be expressed with a degree polynomial on a horizon
[n − N + 1 − p, n − p] of N points, wherep ≶ 0
is a time–shift. The model can be estimated using the
p-shift UFIR filtering algorithm proposed in [21]. In
the convolution-based form, the estimate ofxn can be
found via data taken from[n−N + 1− p, n− p] as

x̂n|n−p =

N−1+p
∑

i=p

hli(p)sn−i , (1)

wherehln(p) , hln(N, p) is the{N, p}-variant im-
pulse response of thel-degree discrete FIR filter.

Satisfied the unbiasedness condition of
E{x̂n|n−p} = E{xn}, the p–variant hli(p) can
be represented as [22, 21]

hli(p) =

l
∑

j=0

ajl(p)i
j , (2)

wherei ∈ [p,N − 1 + p] and coefficientsajl(p) are

ajl(p) = (−1)j
M(j+1)1(p)

|D(p)|
, (3)

where |D(p)| is the determinant of matrixD(p) =
V

T(p)V(p), in whichV(p) is the(l+1)×(l+1) Van-
dermonde matrix. The region of existence ofhli(p) is
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the following [21, 22],

hli(N, p) =

{

nontrivial, p ≤ i ≤ N − 1 + p

0, otherwise
.

(4)
Although thep-shift filtering estimate can be pro-

vided for any UFIR filter degree, the low-degree filters
have found most applications owing to better noise re-
duction.

3.1.1 Optimimal Horizon

The most important parameter of the UFIR filter is
the optimal horizonNopt. Because the mathematical
model of HRV and baseline signal is not available, we
findNopt follow the method proposed in [15, 16]. The
horizonNopt can be estimated from the measurement
residualsn− x̂n|n−p(N) by minimizing the derivative
∂η(N)/∂N , whereη is the MSVη(N) = E{[sn −
x̂n|n−p(N)]2}, and solving the optimization problem
[15]

N̂opt = argmin
N

∂η(N)

∂N
+ 1 . (5)

ProvidedNopt, the baseline of HRV van be esti-
mates using thep-shift UFIR filtering approach.

4 Baseline Estimates and Outliers
Detection

In order to estimate the baseline of HRV with par-
tial seizures,Nopt is required. ProvidedNopt, the
shift p can be specified for each degree as shown in
[21]. Following the suggestion given in [16], we se-
lect l = 2 and specifyp by p = −(Nopt − 1)/2.
Using the physionet database, we next compute the
MSE of HRVseizures (s01, s02, ..., s07) for the esti-
matexn|n−p(N) as function ofN [1 : 2 : 105]. The
results are plotted in Fig. 1a.

Next, we solve the optimization problem (5) and
findNopt = 61 as shown in Fig.1b. Typical values are
labeled when the point is larger than the upper bound
UB = Q3 + w(Q3 − Q1) or smaller than the lower
boundLB = Q1 − w(Q3 − Q1), whereQ1 andQ3

are specified in the25% and75% sense, respectively.
The valuew = 1.5 corresponds to≈ ±2.7σ and the
probability of0.993 for normal distributed data.

The baseline for each measurement can now be
obtained usingNopt to calculate the residuals and de-
tect outliers for the given upper and lower bounds. In
Fig. 2a we show a signal s07 (doted) and the base-
line estimated (solid) along with the the data resid-
ual (dashed). The normalized histogram (H1) of sam-
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Figure 1: Estimation of optimal horizon asNopt =
61: a) MSE of HRV/seizures data (s01, s02,..., s07)
for the estimatexn|n−p(N) and b) minimization of
∂η(N)/∂N to solve the optimization problem (4).

ple s07 and the outliers identified using the boxplot
method are plotted in Fig. 2b and Fig. 2c, respec-
tively. Build similarly, the histogram (H2) of the
residuals and its typical values are sketched in Fig. 2d
and Fig. 2e.

An comparison is next provided of the baseline
estimates obtained by the UFIR smoothing filter and
by several other techniques such as the moving av-
erage filter (MAF), Splines, LOESS, LOWESS, and
RLOESS. The LOWESS and LOESS methods em-
ploy the locally weighted linear regression to smooth
data using linear polynomial and quadratic polyno-
mial respectively. A robust version of the LOESS
is called RLOESS. Taking as a benchmark the base-
line estimates sketched in Fig. 3a and Fig. 3b, we
show the outliers identified during the seizure of sig-
nal s07. As can be observed, the loss of information
using LOESS, RLOESS, and LOWESS is greater than
by others methods.

Finally, Table 1 generalizes the results. The MAF
ansd SPLINE algorithms identify the minimal number
of outliers, while the LOESS, RLOESS, and LOWES
ones the maximum number. Unlike in other meth-
ods, the number of points detected by thep-shift UFIR
smoothing filter is located in the middle of data. Here-
with, the identification based on the boxplot of raw
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Figure 2: Baseline estimation and outliers detection using thep-shift UFIR filter with Nopt = 61 (solid) from
HRV seizures measurements s07 (doted) and residuals (dashed): (a) baseline estimates; (b)–(e) histograms (H1)
and typical points for raw HRV with an extracted average.

HRV seizures has demonstrated an erratic behavior.
It is also worth mentioning that the MSEs produced
by these models is proportional to the number of the
identified outliers.

4.1 Time/Frequency Comparison

We finish our investigation by using the
time/frequency (TF) technique to analyze a signal
in the time and frequency domains simultaneously.
We provide it for the normalized sample frequency
Fs = 1 and a ’flattop’ window using the command
’tftb window’ from Matlab. A TF comparison of
HRV in Pre and Post –Seizure is showed in Fig.
4a and Fig. 4b. In this example, data correspond
to a 48-year-old woman with partial epilepsy. The
Pre-Seizure (< 0min) demonstrates a relative HF of
0.15 − 0.4 Hz, while in Post-Seizure (> 3min), we
have indicated a frequency transition between3 and
4.5 min. Removed the outliers, the mean difference
between the raw HRV and HRV is in the lapse seizure
and we notice the frequency weakness from Fig. 4a to
Fig. 4b. However, the principal peaks power remain
almost intact.
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Figure 3: Atypical points identified at the beginning of
epileptic attack in s07 data and outliers found with es-
timated baseline using: (a) MA (cross), Spline (point)
and p-shift UFIR (circle) and (b) LOESS (cross),
RLOESS (point) and LOWESS (circle) algorithms.
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Table 1: Outliers identified in HRV data in the presence of seizures from s01 to s07 using different methods
estimating the baseline. The ‘Normal’ column means atypical values localized with the boxplot technique applied
to raw HRV with an extracted average.

OUTLIERS BY METHOD
HR Seizure Normal UFIR MA SPLINE LOESS RLOESS LOWESS

s01 58 689 414 428 740 1049 796

s02 1261 426 185 405 828 970 890

s03 1578 866 508 580 1580 1965 1721

s04 403 300 244 250 389 359 403

s05 637 450 493 572 686 726 909

s06 518 424 111 231 493 568 497

s07 484 356 159 251 711 529 870

5 Conclusions

Thep-shift UFIR smoothing filter operating on opti-
mal horizon has demonstrated an ability to estimate
the baseline in spite of statistical changes caused by
the seizures. The residual distribution at the UFIR
smoothing filter output is more normalized than by
other techniques. Therefore, the discrimination of
data has appeared to be most accurate. Because the
l = 2 degree UFIR smoothing filter is invariant to
sharp changes, the proposed solution allows erasing
atypical values with a minimal loss of information. Fi-
nally, the time/frequency analysis has shown that the
proposed method does not alter the ECG principal fre-
quencies.
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